V2X频谱分配
欧洲已分配一个在5.9 GHz频段内带宽为70 MHz的专用频谱,用于进行车辆通信4。目前正着手在全球范围内分配部署。此外,正在进行协调工作,以便能在此频段内使用ITS-G5和C-V2X。在C-V2X环境下,该服务可能已经通过组合使用PC5和Uu接口来使用多个蜂窝频段。蜂窝标准正在研究V2X双频段并发操作。根据3GPP规范5,6,我们创建了表1,汇总列出V2X服务并发操作使用的频段组合示例,其中分别使用4G LTE和5G新无线电(5G NR)接口蜂窝无线电接入技术。高亮显示的行仅适用于5G NR。
双频段和双RAT V2X系统
在可使用多种无线接入技术(RAT)且能够在多个频段内通信时,汽车OEM必须决定采用哪种。在美国,FCC倾向于(在撰写本文时)使用基于DSRC的无线接入7,8,亚太地区则倾向于开发和部署C-V2X9。欧洲对无线接入技术保持中立10。在这方面,目前已发布了多项研究结果,阐述了ITS-G5/DSRC相对于C-V2X的优势。类似研究也认为C-V2X比ITS-G5更有优势。因此,汽车和电信行业的合作伙伴正在努力开发一种解决方案,使V2X服务能够利用无线接入技术在许可频谱和免许可频谱中提供的优势11。
图4是对图2的修改版,我们在无线接入层和分组接入层之间加了一个新的子层,以详细展示接入层。我们称之为无线接入管理(WAM)。这个子层用于确保从网络向无线电层级提供优化的V2X服务。它可以基于用例(延迟要求、QoS等)、流量(拥堵)和链接(无线电质量)条件通过协调多样性或协作更高吞吐量选择不同的无线接入技术。例如,如果检测到ITS-G5无线接口中存在拥堵,则会使用C-V2X通过PC5发送相同的消息。这将提供多样性差异化增益并确保可靠性。在车辆交换高密度地图数据这个用例中,可以将Uu接口与PC5或ITS-G5组合使用,以满足高吞吐量要求。
IEEE论文12,13利用分析和仿真方法,详细介绍和探讨了类似概念所具有的优势(如图4所示)。如之前使用表1所述,在C-V2X框架内,蜂窝系统标准化机构已在探讨研究通过5.9 GHz频段内的PC5和ITS-G5技术实现4G LTE Uu和5G NR Uu频段的并发操作。因此,根据前面介绍的频段并发操作和概念,我们可以说标准化机构和相关的工业研究社区已为双频段,甚至是双RAT V2X系统奠定了基础。现在,汽车行业应寻找最佳硬件装置,以利用双频段和双RAT V2X概念的优势。
图4.在ITS接入层实现多种无线电技术之间的协作与协调
推出适用于未来的V2X系统的单RF IC (ADRV9026)
当今的无线设备已经配备多种无线技术标准,每种标准都要求使用各自独特的模块或硬件。大多数情况下,这些模块提供从RF层到应用层的解决方案。在这种架构中实施这种双频段V2X系统和提供协作和合作机制并不容易,因为这类模块的制造商或供应商并不提供自由访问中间层的权限,而在多种标准之间实现协作或合作需要这种权限。通过可用的无线模块实现这些配置需要使用外部标准化接口。
因此,我们需要支持实现这类系统的设计。使用软件定义无线电(SDR)的无线电发射器和接收器设计让我们能够完全自由地在任何阶段访问和处理数字数据。ADI RadioVerse产品系列包含许多可将RF转化为比特,将比特转化为位的宽带无线电收发器。这种信号与RF频段和基带之间的转换是基于零中频(ZIF)架构。从根本上说,与基于直接RF采样的转换相比,它要求的功率更低,因为所有电路都在更窄的带宽上工作。此外,由于ZIF放宽了对发送器和接收器的滤波要求,所以使得RF前端更简单、成本更低。
ADRV9026是对RadioVerse产品系列中双频段SDR产品的扩展。这是一款单芯片全集成式RF IC。它有4个发射和4个接收通道,可以独立编程和控制,用于发射和接收75 MHz和6 GHz之间的任何载波频率。接收带宽可高达200 MHz,而发射器合成带宽可高达450 MHz。此外还提供片内观测路径(每条通道的带宽高达450 MHz),以支持高功率传输场景中功率放大器的线性化校正。图5显示整个收发器的功能框图。
图5.ADI提供的4通道发射器和4通道接收器ADRV9026 RF IC的功能框图。14
图6.ADRV9026可以同时在多个频段中发送和接收
ADRV9026使用先进的本地振荡器架构,可以同时在多个6 GHz以下的频段发送和接收。图6显示了使用单个RF IC ADRV9026在不同频段或采用不同无线接入技术同时发送和接收的示例。在这个示例中,我们仅选择三组频段组合。重点突出ADRV9026能在75 MHz和6 GHz之间的任何频段内运行。因为ADRV9026中有4个独立的RF通道,所以我们甚至能用各自独立的频段或技术来实现2 × 2 MIMO功能。在使用ADRV9026时,我们能获得多种优势。
u 可以灵活选择C-V2X中的任何频段,且无需额外的认证成本。
u 组合使用多个RAT要求更高的同步性能。使用ADRV9026能够更容易地实现这种同步,因为两个频段都由单个RF IC控制。在“双频段和双RAT V2X系统”一节中,我们讨论了双频段V2X系统的概念,以及如何使用单个RF IC来达成此目的。未来,我们会提供有关这类双频段V2X设备的架构和设计的更多细节。
u 通过使用ADRV9026,可在非常靠近天线的位置执行RF-比特转换。这可以避免同轴电缆中的RF信号损耗,在5.9 GHz V2X频段中这种损耗相当高。
u 至于RF性能方面,ADRV9026可以满足无线基站要求。现有的无线模块基于针对终端用户设备开发的ASIC。所以,ADRV9026提供更高的RF性能,因此具有更低的延迟、更高的可靠性和更高的QoS。所有这些指标可提供更高的数据速率和无线吞吐量,从而带来更出色的驾乘体验,以及更高的安全性。
u 高数据速率和低延迟使驾驶员或自动驾驶系统能够更快地做出反应,为安全相关用例提供更有力的支持。例如,在免许可/专用无线电资源将要达到拥堵限制的大流量场景中,与独立式或单接入系统相比,协作/协调系统(如“双频段和双RAT V2X系统”中所述)可以提供更高的可靠性和更好的安全标准。
所以,需要使用具有认知智能和支持单个RF IC的协作/协调配置来满足V2X用例的要求。ADI公司提供以单个设备(例如ADRV9026)实现此目标的技术。
结论
在本文中,我们介绍了V2X通信当前的发展情况,这是推动实现自动驾驶汽车的关键因素。在这一领域,可以将两种无线技术配合使用以满足V2X服务的关键要求。这两种技术分别是C-V2X和DSRC/ITS-G5,可在许可和免许可频段内运行。实现协调/协作V2X系统有不同的选项可以选择。ADI公司提供支持双频段和双频段无线标准的技术,具有更高的RF性能、更低的延迟、更高的数据速率和更高的可靠性。我们已讨论了如何使用此RF IC来设计V2X通信设备,它可以在两个不同的无线电频段同时针对两种V2X技术提供无线接入。
参考资料
1 ETSI TS 102 894-1 V1.1.1 (2013-08): 智能交通系统(ITS);用户和应用要求;部分:设备层结构、功能要求和规格。ETSI,2013年8月。
2 Khadige Abboud、Hassan Aboubakr Omar、Weihua Zhuang。“适用于V2X通信的DSRC和蜂窝网络技术互通:一项调查。”IEEE Transactions on Vehicular Technology,第65卷,第12期,2016年12月。
3 3GPP TS 36.300 V15.7.0 (2019-09):第3代合作伙伴计划;技术规范组无线接入网;不断演进的通用地面无线接入(E-UTRA)和不断演进的通用地面无线接入网络(E-UTRAN);概述;第2阶段(15版)。
4 ETSI EN 302 571 V2.1.1 (2017-02)智能交通系统(ITS);
在5 855 MHz至5 925 MHz频段内工作的无线电通信设备;涵盖2014/53/EU指令第3.2条基本要求的调谐标准。ETSI,2017年2月。
5 3GPP TR 36.786 V14.0.0 (2017-03)基于LTE的车对万物(V2X)服务;用户设备(UE)无线电发射和接收。
6 3GPP TR 38.886 V0.5.0 (2020-02)基于NR的V2X服务;用户设备(UE)无线电发射和接收。
7 情况说明—使用5.850-5.925 GHz频段: 规则建议通知—ET案卷编号19-138。联邦通信委员会。2019年11月。
8 专用短距离通信(DSRC)服务: 规则(第47 C.F.R、90和95部分)。联邦通信委员会。2019年4月。
9 亚太地区的ITS频谱使用。5G汽车协会。
10 意见书: 欧洲在互联和自动驾驶领域的领先地位取决于技术中立、以创新为导向的政策。5G汽车协会。2018年11月。
11 面向未来互联移动的5G解决方案。5G NetMobil。
12 Richard Jacob、Norman Franchi、Gerhard Fettweis。“混合V2X通信:多RAT助力实现互联自动驾驶。”2018年IEEE第29届个人、室内和移动无线电通信国际年会(PIMRC),2018年9月。
13 Richard Jacob、Waqar Anwar、Gerhard Fettweis、Joshwa Pohlmann。“利用车辆专用网络中的多RAT多样性提高协同自动驾驶应用的可靠性。”2019年IEEE第90届汽车技术大会(VTC2019-秋),2019年9月。
14 ADRV9026数据手册。ADI公司,2021年1月